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Abstract: Four new [copper(II) and iron(III)] complexes were synthesized using N-(4-hydroxy-3-

((piperidin-1-yl)methyl)phenyl)acetamide (HL) a Mannich base as ligand. All compounds were 

successfully characterized by elemental analysis, conductivity measurements, Ultraviolet-visible, 

Infrared, and Nuclear Magnetic Resonance spectroscopy. Furthermore, the structural determination of 

HL by X-ray diffraction technique at room temperature showed that the ligand crystallized in the 

monoclinic crystal system with space group Cc and Z=4. Structural analysis revealed the chelation of 

the ligand and the bonding mode of the thiocyanate group. All the metal complexes demonstrated 

considerable abilities to oxidize 3, 5-di-tert-butylcatechol in DMF under aerobic conditions. Complex 3 

(with an iron(III) center) displayed the highest turnover rate of 14.69 ± 0.71 h-1. 
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1. Introduction  
Mannich reaction offers a convenient route for the amino-methylation of active methylene 

compounds including phenols, imidazoles, and acetophenones etc. [1-3]. p-Acetamidophenol has been 

employed as a versatile organic starting material in organic synthesis and its use as analgesics, in the 

formation of azo dyes for textiles, photo electronics and Mannich reaction appears to be most popular 

[4 -6]. The synthesis of a wide variety of Mannich bases starting with p-acetamidophenol has been 

included in studies carried out by Blade-Font and de Mas Rocabayera [7] as well as Latif et al., [8] also 

our previous research on the catecholase activity of metal complexes of Mannich bases from p-

acetamidophenol is available in the literature [9]. 

The observation that Mannich bases of acetamidophenols generally have not received sufficient 

attention like those of cresols may be attributed to their tendency to undergo C- and N- amino-

methylation which may make the synthesis and characterization more cumbersome [10]. A literature 

survey into metal complexes of p-acetamidophenol-Mannich bases as candidates for catecholase activity 

revealed a lack of research in this regard and served as a motivation to us for further studies. The search 

for compounds with better biomimetic capabilities has led to our investigation of metal complexes of 

Mannich bases of this kind as probable candidates for the oxidation of catechol to o-benzoquinone. 

We report here the synthesis and characterization of [N-(4-hydroxy-3-((piperidin -1-yl)methyl) 

phenyl)acetamide] along with its metal complexes. The title ligand was first encountered as a precursor 

in a synthetic route by Sriram et al., [11] but the characterization was not reported, the data has now 

been expanded by providing its crystal structure as well as results of other spectroscopic characterization. 

We have also included herein how thiocyanate/isothiocyanate impacts on the catalytic properties of the 

metal complexes. The spectro-analytical techniques reported include elemental analysis, IR, UV, NMR, 

and single-crystal X-ray diffraction. 
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2. Materials and methods  
All chemicals were of reagent grade as purchased from Sigma-Aldrich and were used without further 

purification. Elemental analysis was carried out using Elementar Analysensysteme VarioMICRO V1.62 

GmbH analysis System.  NMR spectroscopic analysis was recorded in CDCl3 using Bruker AMX 300 

MHz spectrometer. Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectra were 

recorded on a PerkinElmer Spectrum400 spectrophotometer in the range 4000 to 650 cm-1. Electronic 

spectra were acquired in two solvents (DMF and DMSO) on Perkin Elmer UV/Vis Spectrophotometer 

- Lamba 25. Molar conductivities of the metal complexes were measured in 10-3 M DMSO solution on 

AZ 86555 conductivity meter. Melting points were determined on Gallenhamp melting point apparatus. 

For catecholase activity study, metal complexes solutions (10-4 M) were treated with 10-2 M (100 

equivalents) of 3, 5-di-tertbutyl catechol under aerobic conditions and was followed by kinetic studies. 

 

Step I:Synthesis of 4-N-(4-hydroxy-3-((piperidin-1-yl)methyl)phenyl)acetamide (HL, C14H20N2O2) 

The synthesis of the Mannich base (denoted as Ligand or HL) was carried out by adapting the 

methods previously reported in the literature [12-14]. Equivalent amounts (3.0 mmol) of p-

acetamidophenol and formaldehyde were taken along with 2.0 equiv. piperidine dissolved in 10 mL of 

iso-propanol and heated in a steam bath for 3 h with the reaction monitored with TLC. Upon the 

termination of the reaction, the solvent was removed by suction and the remaining mixture taken into 

ethanol with a little amount of acetone and the mixture was then left overnight in a refrigerator. White 

crystalline solids suitable for single-crystal X-ray diffraction grew from the mixture. The reaction 

involved leading to the formation of the ligand is presented in Scheme 1. White crystalline solid, yield 

71%, mp: 154 ºC, Anal. Cald (%) for C14H20N2O2, C, 67.71; H, 8.11; N, 11.28. Found C, 67.66; H, 8.68; 

N, 11.15%.1H NMR (CDCl3): 1.49 (m, 6H, (-CH2)3), 2.12 (s, 3H: CH3CONH-),3.05(q, 4H, (-CH2)2N-), 

4.15 (s, 2H, ArCH2N), 6.93 – 7.66 (Ar-H); 13C NMR (CDCl3): 24.35 (CH3CONH), 24.72 & 26.24 

(CH2)3, 54.30 (CH2)2N), 62.45 Ar-CH2, 116.46 – 155.49 (Aromatic carbons), 168.47 (CH3CONH). IR 

bands (ATR-FTIR, cm-1): 3276, 1253, 1149. Electronic spectra (DMF, cm-1): 33670; (DMSO, cm-1): 

38023, 33445. 

 

 
Scheme 1. Synthesis of 4-N-(4-hydroxy-3-((piperidin-1-yl)methyl)phenyl)acetamide (HL) 

 

 

Step II. Syntheses of Cu(II) and Fe(III) complexes 

This was achieved by dissolving the 5 mmol of the Mannich base in chloroform, this was then added 

to 5 mmol methanolic solutions of Copper (II)/Iron(III) salts and stirred at ambient temperature for 6 h. 

The preparation of the thiocyanate analogues involved the dissolution of 5 mmol of KSCN in a minimum 

amount of methanol, plus the solution of the ligand and added to the solution of the metal salt. The 

obtained precipitate in all cases was then filtered, washed with an equimolar mixture of methanol: 

chloroform and dried. 
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2.3a [CuHLCl2]•H2O•1/4CHCl3   (1): Yield 63 %: mp: 152 ºC. Anal. Cald (%) for CuC14H22N2O3 

•1/4CHCl3: C, 39.73; H, 5.20; N, 6.50. Found: C, 39.32, H, 4.96; N, 6.59. ΛM = 29.96 Ω1.cm2.mol-1. IR 

bands (ATR-FTIR, cm-1): 3339, 1254, 1033 cm-1. Electronic spectra (DMF, cm-1): 35842, 32258, 22780 

(sh), 11274; (DMSO, cm-1): 31847, 30395 (sh), 19607, 11628. 

2.3b [CuHL(SCN)(H2O)3]•Cl (2): Yield 54 %: mp: 206 ºC. Anal. Cald (%) for CuC15H26N3O5SCl: 

C, 39.21; H, 5.37; N, 8.78. Found: C, 39.02, H, 5.37; N, 8.78. ΛM = 50.61 Ω1.cm2.mol-1. IR bands (ATR-

FTIR, cm-1): 3337, 2106 (sp, s), 1255,1025, 760 cm-1. Electronic spectra (DMF, cm-1): 37174, 30211, 

16103; (DMSO, cm-1): 34364, 12937. 

2.3c [Fe(HL)2Cl3]•4H2O (3): Yield 58 %: mp: 169 ºC. Anal. Cald (%) for FeC28H36N4O6: C, 46.00; 

H, 6.62; N, 7.66. Found: C, 46.18, H, 6.88; N, 7.43. ΛM = 59.52 Ω1.cm2.mol-1. IR bands (ATR-FTIR, 

cm-1): 3364, 1261, 1117 cm-1. Electronic spectra (DMF, cm-1): 37037, 33333, 27701; (DMSO, cm-1): 

32362, 28249, 25316(sh), 19841. 

2.3d [FeHL(NCS)Cl2]•2
1/2H2O (4): Yield 46 %: mp: 157 ºC. Anal. Cald (%) for FeC15H25N3O4.5S: 

C, 37.67; H, 5.06; N, 8.79. Found: C, 37.34, H, 4.62; N, 8.51. ΛM = 82.54 Ω1.cm2.mol-1. IR bands (ATR-

FTIR, cm-1): 3276, 2035(s, br), 1257, 1116, 827 cm-1. Electronic spectra (DMF, cm-1): 37037, 33445, 

27027; (DMSO, cm-1): 27778, 29586. 

 

Crystallographic study 

“The data was collected using a Bruker KAPPA APEX II single crystal X-ray diffractometer, with a 

4-circle Kappa goniometer and sensitive CCD detector. The instrument used a Molybdenum fine focus 

sealed X-ray tube as an X-ray source and an Oxford Cryostream 700 system for sample temperature 

control. Bruker’s APEX2 software [15] was used for instrument control. The structure was solved using 

SHELXT-2014 [16] and refined by the least square procedures using SHELXL-2016 [17] with 

SHELXLE [18] as a graphical interface. Data were recorded for absorption effects using the numerical 

method implemented in SADABS [15]”.  

 

3. Results and discussions 
Discussion of ligand structure  

Data obtained from 1H NMR spectroscopic study of the Mannich base showed that the 

aminomethylated group (ArCH2N) resonated upfield at 4.15 ppm and is indicative of successful 

aminomethylation at the position ortho to the hydroxyl group of the p-acetamidophenol to give a 

Mannich monobase. This is in close agreement with results from 13C NMR spectroscopy [19]. Table 1 

contained crystal data, experimental details as well as a structural refinement for Mannich base (HL).  

 

Table 1. Crystallographic data of HL 
Compound Mannich base 

Empirical Formula C14H20N2O2 

Formula weight 248.32 

Crystal size (mm) 0.08 x 0.59 x 0.64 

Crystal System Monoclinic 

Space group Cc 

a/Å 8.8235(8) 

b/Å 18.4653(19) 

c/Å 9.0809(9) 

α / o 90 

β / o 114.903(4) 

γ / o 90 

V / Å3 1342.00(2) 

Z 4 

Wavelength (MoKα)(Å) 0.71073 

T(K) 200 

Dcalc / g/cm3 1.229 

µ/ mm-1 0.083 

F (000) 536 
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Refl. Collected/unique 9221/2972 

Data/parameters 2672/168 

θmin/max 2.2/28.3 

Final R indices [I > 2σ(I)] R1 = 0.0323, wR2 = 0.0821 

GOOF 1.05 

Max/min., Δρ 0.20/-0.17 

 

Table 2. Hydrogen-bond geometry (Å, °) 
D–H···A D–H H···A D···A D–H···A 

O1—H1…N1 0.84 1.9300 2.676(2) 147.00 

N2—H2..O2 0.86(2) 2.04(20 2.896(2) 170(2) 

C11—H11A..O2 0.99 2.5800 3.549(3) 165.00 

C26—H26..O2 0.95 2.4300 2.946(3) 114.00 

 

Figures 1 and 2 show the molecular structure of the Mannich base (HL) and its packing arrangements 

through the a-axis in the unit cells. The crystal structure of (HL) comprised molecules of the Mannich 

base involved in both intramolecular and intermolecular H-bonding interactions that resulted in the 

formation of dimers (Table 2).  

It was observed that the methyl group of the acetamido shows rotational disorder. Intramolecular H-

bonding interactions occur from the phenyl hydroxyl group to the adjacent piperidylaminomethyl 

nitrogen [O-H---N, 2.676 (2) Å, < 147.00o]. The value of the C-O bond distance is similar to the literature 

value of Car-O (1.362 Å) [20, 21]. 

  
 

               

Figure 1. Molecular structure of 

4-N-(4-hydroxy-3-((piperidin-1-

yl)methyl)phenyl)acetamide (HL) 

with atom labelling. Displacement 

ellipsoids are drawn at the 50% 

probability level 
 

Figure 2. View along b axis of 

the crystal packing of 

4-N-(4-hydroxy-3-((piperidin-1-

yl)methyl)phenyl)acetamide 

(HL). H-bonds are represented 

by dashed lines 
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Properties of the complexes 

All the compounds reported herein are brownish in colour, obtained in moderate yields, stable, 

possess high melting points, all the metal complexes except 3 which is (1:2) are obtained in ratio 1:1 

(metal to ligand ratio). Complexes 2, 3 and 4 showed higher molar conductivity values in the range 

(50.61 – 82.54   Ω1.cm2.mol-1) than 1 and the ligand indicating that they are (1:1) electrolytes [22, 23].  

 

InfraRed Spectroscopy 

Figure 3 contains the IR spectra of HL as well as its metal complexes. The hydroxyl group of HL 

resonated as a sharp band at 3276 cm-1 (presence of Hydrogen bonding as observed in solution by NMR) 

but increased to within the range of 3276 – 3364 cm-1 and became broader. This suggested coordination 

with the loss of hydrogen bonding and possibly the presence of coordinated water molecules particularly 

in the iron(III) complexes. Further upward shifts observed in the νC-O of HL at 1253 cm-1 to within 

1254–1261 cm-1 supported the bonding of the phenolic hydroxyl group to the metal center. Upward 

shifts in νC-O are usually observed in the case of a deprotonated hydroxyl group leading to the formation 

of a direct metal-oxygen bond. An increase in the νC-O without deprotonation has been reported by 

Mahmoud and El-Haty [24]. 

 

 
Figure 3. FT-IR spectra of HL and its metal complexes. 

Important bands of the spectra are highlighted 
 

Evidence to support the involvement of the amine nitrogen atom is the lowering by ~ 22 – 124 cm-1 

the stretching frequency of the bond (C-N) in the Mannich base at 1149 cm-1. This led to the appearance 

of broad bands for νC-N in all the metal complexes and most noticeable in the case of 2; this further 

suggests bonding of the N–atom to the central metal [25, 26]. Complex 3 seemed to be a big beneficiary 

of complexation owing to the strengthening of its νC-O and least reduction in the νC-N. 
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The successful inclusion of thiocyanate within the metal complexes was confirmed from the infrared 

spectra by the observation of absorption bands at 2106 cm-1 and 2035 cm-1 in the copper(II) (2) and iron 

complex(III) (4) respectively. It can therefore be inferred that 2 contained thiocyanato while 4 contained 

isothiocyanato. This was further supported by the presence of the band due to νCS at 760 and 827 cm-1 

in 2 and 4 [27, 28]. 
 

 

Figure 4. Proposed structures of complexes 1 – 4 

 

UV-Vis Spectroscopy 

In 1, the absorption band at 22780 cm-1 (sh) observed in DMF and 19608 cm-1 in DMSO was 

adjudged to be an “LMCT” and the d-d transition is recorded at 11274 cm-1 typical of an octahedral 

geometry while in DMSO the transition at 11628 cm-1 was assigned to 2Eg→
2T2g transition in an 

octahedral geometry. In 2, single transitions in DMF at 16103 cm-1 and 12937 cm-1 in DMSO were 

assigned to 2Eg→
2T2g (d-d) transitions commonly observed in octahedral geometries of Cu(II) complexes 

of Mannich bases [29, 30]. 

The data generally obtained from the UV-Vis spectra of Iron(III) complexes are known not to be 

reliable in making full diagnostic conclusions. The band (29586 - 25316 cm-1) was assigned to the 

charge-transfer transition of the phenolate oxygen to the singly occupied eg orbitals of iron(III), the band 

at 19841 cm-1 is also a CT transition [31, 32].  

The band at 30303 - 25000 cm-1 was assigned to “phenolato to copper(II) charge transfer” as reported 

in the literature. Also, in studies conducted by Thirumavalavan et al., on iron(III) phenolate complexes, 

phenolate - CT transition was observed at 20408 – 18181 cm-1 [33]. Proposed structures of metal 

complexes are depicted in Figure 4. 

 

Evaluation of Catecholase Activities 

Many recent examinations of catecholase activity of coordination compounds utilized 3, 5-di-

tertbutylcatechol (3, 5-DTBC) as the model substrate because it has low redox potential that makes it 
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easy to oxidize and the presence of bulky t-butyl substituents discourages over-oxidation reactions such 

as ring-opening [34]. 

3, 5-di-tert-butylquinone (3,5-DTBQ); the oxidation product is very stable and displays absorption 

maximum ca 399 nm in DMF. The preliminary investigation was carried out by treating 10−4 M DMF 

solutions of metal complexes with 100 equivalents of 3, 5-DTBC in the presence of oxygen. After the 

addition of the catecholic substrate, a band ca 399 nm was identified in the UV−Vis scan at 5 min 

interval, thus indicating the formation of 3,5-DTBQ. An example is given of complex 2 below in Figure 

5. 

 

Figure 5. Increase in absorbance at ~399 nm, after the addition of  

100 equivalents of 3,5-DTBC to a 10-4 M DMF solution of 2.  

[Spectra were recorded at an interval of 5 min for 1 h] 

 

Detailed kinetic studies of the oxidation process using each of the metal complexes were carried out 

by the method of initial rates at 399 nm [35 - 37]. The rate constant for the process was determined from 

the plot of log[Aα/(Aα−At )] against time as shown in Figure 6.  

 

 
Figure 6. Catecholase activity of the metal complexes.  

The figure shows the course of absorption maxima at 399 nm with time  

for 100 equivalents of 3,5-DTBC in solutions of 10-4 M complexes 1 - 4 in DMF 

 

The reliance of the oxidative process on substrate concentration was studied by using 10−4 M 

solutions of 1, 2, 3 and 4 and varying the amounts of 3, 5-DTBC from 20 to 100 equivalents. At minimum 

substrate presence first-order dependence was observed while at higher substrate concentrations, 

saturation kinetics took place. The dependence on substrate concentration suggested that the first step of 

the catalytic cycle involved the binding of the substrate to the catalyst.  
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Figure 7. The Lineweaver-Burk plot for the metal complexes 1- 4 

 

The data obtained were analyzed by Michaelis−Menten kinetics while the Michaelis− Menten 

constant (KM) and maximum initial rate (Vmax) were determined by linearization using Lineweaver−Burk 

plots depicted in Figure 7. The turnover number (kcat) values were calculated by dividing the Vmax values 

by the concentration of the corresponding complexes [38 - 40]. Detailed results are presented in Table 

3.  

 

Table 3. Kinetics parameters for the oxidation of the substrate catalyzed by 

 the metal complexes 1 - 4 
Compound Vmax (Ms-1) KM (M) kcat (h-1) 

1 (1.72 ± 0.09) x 10-7 (1.67 ± 0.08) x 10-3 6.19 ± 0.30 

2 (5.18 ± 0.30) x 10-8 (3.46 ± 0.15) x 10-3 1.86 ± 0.09 

3 (4.08 ± 0.21) x 10-7 (2.35 ± 0.12) x 10-2 14.69 ± 0.71 

4 (1.38 ± 0.06) x 10-7 (7.12 ± 0.40) x 10-4 4.96 ± 0.22 

 

The order of catecholase activity is: 3 >1 > 4 > 2. Complex 3 is most stable because of chelate effect 

as well as possessing a metal center richly supplied with electrons and that is proposed to enhance its 

catalytic properties. Several factors have been reported to affect catecholase activity, chiefly among them 

are the presence of thiocyanate and the nature of coordination of the metal center [41 - 43]. The reason 

for the better catalytic properties of the Fe(III) complexes over the Cu(II) complexes may be attributed 

to sthe higher reduction potential of their metal center which is a vital process in the catalytic process. 

Comparable or higher values of kcat have also been observed in some previous studies with the nature of 

the solvent playing a great role [44, 45]. It is believed that a less coordinating solvent than DMF may 

result in higher turnover rates because of a more favourable formation of the metal-substrate adduct. 

 

4. Conclusions  
In this study, the synthesis and characterization of a Mannich base, 4-N-(4-hydroxy-3-((piperidin-1-

yl)methyl)phenyl) acetamide (HL) and its Cu(II) and Fe(III) complexes by spectro-analytical techniques 

have been reported. Also, the crystal structure of HL was determined by X-ray diffraction at room 

temperature. According to the analytical and spectral data, HL behaved as a bidentate ligand in the 

coordination process. The inclusion of the thiocyanate in the metal coordination sphere was verified by 

Infrared Spectroscopy with the observation of bands in the range 2035 – 2110 cm-1. Also, it was further 

observed that the thiocyanate group had an unfavourable impact on the catalytic abilities of the metal 

complexes. 
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Supplementary material 

Crystallographic data for the structural analysis have been deposited at the Cambridge Crystallo-

graphic Data Centre, CCDC No. 1556952. Copies of this information may be obtained free of charge 

from the Director, CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (fax: +44-1223-336033; e-mail: 

deposit@ccdc.cam.ac.uk or www:http://www.ccdc.cam.ac.uk). 
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